2018年哈尔滨工业大学612数学分析考研大纲
文章搜索   高级搜索   
考研试卷库

考博信息网 >> 文章中心 >> 考研复习 >> 专业课 >> 正文  2018年哈尔滨工业大学612数学分析考研大纲

新闻资讯
普通文章 上海理工大学各学院博士生导师联系方式
普通文章 上海师范大学2018年录取研究生学费标准
普通文章 北京航空航天大学2002-2016年硕士博士研
普通文章 南开大学张文忠教授简介
普通文章 南开大学阎国栋教授简介
普通文章 南开大学王新新教授简介
普通文章 南开大学王丽丹教授简介
普通文章 南开大学王宏印教授简介
普通文章 南开大学王传英教授简介
普通文章 南开大学苏立昌教授简介
调剂信息
普通文章 北方工业大学机电工程学院自动化系2012
普通文章 华南师大光学、光学工程、材料物理与化
普通文章 关于报考中科院大气物理研究所2012年硕
普通文章 广西中医学院2011年硕士研究生调剂信息
普通文章 广西工学院2011年硕士研究生调剂信息公
普通文章 【广西工学院】2012年考研调剂信息
普通文章 【桂林医学院】2012年考研调剂信息
普通文章 广西艺术学院2012拟接收硕士研究生调剂
普通文章 江西科技师范学院2011年硕士研究生调剂
普通文章 【江西科技师范学院】2012年考研调剂信

2018年哈尔滨工业大学612数学分析考研大纲

2018 年数学系硕士研究生入学考试大纲
考试科目名称:数学分析 考试科目代码:[612]
一、考试要求:
1)要求考生熟练撑握数学分析的基本概念、基本理论和基本方法。
2)要求考生具有严格的数学论证能力、举反例能力和基本计算能力。
3)要求考生了解数学分析中的基本概念、理论、方法的实际来源和历史背景,
清楚它们的几何意义和物理意义,初步具备应用数学分析解决实际问题能力。
二、考试内容:
1) 极限和连续
a.熟练掌握数列极限与函数极限的概念,包括数列的上、下极限和函数的左、
右极限。
b.掌握极限的性质及四则运算性质,特别要能够熟练运用两面夹原理和两个特
殊极限。
c.熟练掌握实数系的基本定理:区间套定理,确界存在定理,单调有界原理,
Bolzano-Weierstrass 定理,Heine-Borel 有限覆盖定理,Cauchy 收敛准则;并
理解相互关系。
d.熟练掌握函数连续性的概念及相关的不连续点类型。能够运用函数连续的四
则运算与复合运算性质以及相对应的无穷小量的性质;并理解两者的相互关系。
e.熟练掌握闭区间上连续函数的性质:有界性定理、最值定理、介值定理和
Contor 定理。
2) 一元函数微分学
a.理解导数和微分的概念及其相互关系,理解导数的几何意义和物理意义,理
解函数可导性与连续性之间的关系。
b.熟练掌握函数导数与微分的运算法则,包括高介导数的运算法则,会求分段
函数的导数。
c.熟练掌握 Rolle 中值定理,Lagrange 中值定理和平共处 Cauchy 中值定理以
及 Taylor 公式。
d.能够用导数研究函数的单调性、极值,最值和凸凹性。
e.掌握用 L’Hospital 法则求不定式极限的方法。
3) 一元函数积分学
a.理解不定积分的概念。掌握不定积分的基本公式,换元积分法和分部积分法,
会求有理函数、三角有理函数和简单元理函数的积分。
b.掌握定积分的概念,包括 Darboux 和,上、下积分及可积条件与可积函数类。
c.掌握定积分的性质,熟练掌握微积分基本定理,定积分的换元积分法和分部
积分法。
d.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积,平面贡线
的弧长,旋转体的体积与侧面积,平行截面面积已知的立体体积,变力做功和物
体的质量与质心)。
e.理解广义积分的概念。熟练掌握判断广义积分收敛的比较判别法,Abel 判别
法和 Dirichlet 判别法;其中包括积分第二中值定理。
4) 无穷级数
a.理解数项级数敛散性的概念,掌握数项级数的基本性质。
b.熟练掌握正项级数敛散的必要条件,比较判别法,Cauchy 判别法,D’Alembert
判别法与积分判别法。
c.熟练掌握任意项级数绝对收敛与条件收敛的概念及其相互关系。熟练掌握交
错级数的 Leibnitz 判别法。掌握绝对收敛级数的性质。
d.熟练掌握函数项级数一致收敛性的概念以及判断一致收敛性的 Weierstrass
判别法。Abel 判别法和 Dirichlet 判别法。熟练掌握一致收敛级数的性质。
e.掌握幂级数及其收敛半径的概念,包括 Cauchy-Hadamard 定理和 Abel 第一定
理。
f.熟练掌握幂级数的性质。能够将函数展开为幂级数。了解 Weierstrass 逼近
定理。
g.了解 Fourier 级数的概念与性质以及敛散性的判别法。
5) 多元函数微分学与积分学
a.理解多元函数极限与连续性,偏导数和全微分的概念,会求多元函数的偏导
数与全微分。
b.掌握隐函数存在定理。
c.会求多元函数极值和无条件极值,了解偏导数的几何应用。
d.掌握重积分、曲线积分和曲面积分的概念与计算。
e.熟练掌握 Gauss 公式、Green 公式和 Stoks 公式及其应用。
6) 含参变量积分
a.了解含参变量常义积分的概念与性质。
b.掌握含参变量广义积分的一致收敛性的概念及其判别法。掌握一致收敛的含
参变量广义积分的性质。
三、试卷结构:
1) 考试时间:180 分钟,满分:150 分
2) 题型结构
a: 论证与举反例(105-135 分)
b: 基本计算(15-45 分)
四、参考书目:
1.《数学分析》(上、下册),复旦大学数学系编,高等教育出版社,2007 年,
第二版
2.《数学分析习题集》,北京大学数学系编,高等教育出版社。

  • 上一篇文章:

  • 下一篇文章:
  •  

    考博咨询QQ 135255883 点击这里给我发消息 考研咨询QQ 33455802 点击这里给我发消息 邮箱:customer_service@kaoboinfo.com
    考博信息网 版权所有 © kaoboinfo.com All Rights Reserved
    声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!