2018年集美大学数学分析考研大纲
新闻资讯
考研查分
调剂信息
院校信息
考研试卷
考博试卷
考研动态
同等学力
报考指南
分数线
招生简章
专业介绍
考研心路
考研故事
考研经验
考研复试
考研政治
考研英语
考研数学
专业课
法律硕士
工程硕士
会计硕士
帮助中心
您现在的位置:
考博信息网
>>
文章中心
>>
考研复习
>>
专业课
>> 正文
2018年集美大学数学分析考研大纲
2018年集美大学数学分析考研大纲
1
集美大学 2018 年硕士研究生入学考试初试自命题考试大纲
考试科目代码:[605]
考试科目名称:数学分析
一、考核目标
(一)考查考生对数学分析的基本概念、基本理论、基本方法和基本计算的理解和
掌握程度。
(二)考查考生的基本计算能力,逻辑推理能力,抽象思维能力,分析和解决实际
问题的综合能力。
二、试卷结构
(一)考试时间:180 分钟,满分:150 分。
(二)题型结构
1、计算题:6 小题,每小题 12 分,共 72 分。
2、讨论题:2 小题。每小题 15 分,共 30 分。
3、证明题:4 小题,每小题 12 分,共 48 分。
三、答题方式
闭卷笔试。
四、考试内容
(一)一元函数微积分学部分,35%(52 分)
考试内容:
1、分析引论
函数初等特性;数列、函数极限分析定义;左、右极限;无穷小与无穷大定义;
无穷小的比较;极限一般性质、四则运算性质;极限存在判定准则;求极限方法;
函数的连续性;间断点及分类;函数一致连续性及判定法;闭区间上连续函数 4 条
性质;上(下)确界、上(下)极限、聚点概念;实数完备性的 7 个等价描述。
2
2、一元函数微分学
导数概念及几何意义;导数四则、复合、反函数运算法则;隐函数、参量函数
求导方法;微分概念及几何意义;微分四则运算法则;高阶导数;高阶微分;求导
数或微分;Fermat 引理;Rolle、Lagrange 和 Cauchy 中值定理;两种余项形式的
Taylor 公式;洛必塔法则;函数单调性、凹凸性及判定法;函数极值点、拐点及判
定法;曲线渐近线与作图。
3、一元函数积分学
原函数概念;不定积分及性质;定积分概念;可积性判定准则;可积的充分条
件;定积分性质;定积分中值定理;变限积分函数及性质;原函数存在性;微积分
学基本定理;换元积分法;分部积分法;不定积分计算法;定积分计算法;定积分
在几何上应用。
考试要求:
1、理解变量极限及连续的概念,会判定极限的存在性,掌握求极限的基本方
法,掌握函数一致连续性的论证方法,掌握闭区间上连续函数的基本性质,理解上
(下)确界概念,了解实数完备性的等价命题。
2、理解导数和微分的概念,掌握导数与微分、高阶导数的计算方法,掌握微
分中值定理、Taylor 公式及其应用,会用导数判定函数的性态。
3、理解不定积分、定积分的概念,了解可积性判定准则,掌握微积分学基本
公式及其应用,掌握定积分的性质和计算方法,会用微元法解决实际问题。
(二)多元函数微积分学部分,35%(53 分)
考试内容:
1、多元函数微分学
多元函数概念;重极限与累次极限;重极限存在性判定与求法;多元函数连续
性及性质;偏导数、方向导数与全微分概念;一阶全微分形式不变性;高阶偏导数;
二元函数微分中值定理;偏导数计算法;链锁法则;隐函数(组)存在性及求导法;
偏导数在几何上应用;多元函数极值及判定法;条件极值与 Lagrang 乘数法;多元
函数最大(小)值的确定。
2、多元函数积分学
二、三重积分概念与性质;重积分累次积分法、极坐标法、截面积分法、柱面
3
坐标法、球面坐标法、一般变量替换法;两类曲线积分概念、性质及联系;两类曲
线积分计算法;Green 公式;两类曲面积分概念、性质及联系;两类曲面积分计算
法;奥高公式;Stokes 公式;平面曲线积分与路径无关的等价命题;各类积分在几
何上的应用;场论初步。
考试要求:
1、会判定重极限的存在性,理解多元函数连续、偏导数、全微分、方向导数
的概念及相互联系,掌握偏导数的计算方法,掌握微分学在几何上的应用,掌握多
元函数极值的判定法,会用 Lagrang 乘数法解决实际问题。
2、理解重积分、曲线积分、曲面积分的概念及性质,掌握二重、三重积分的
基本计算方法,掌握两类曲线积分、曲面积分的相互联系和计算方法,掌握 Green
公式、奥高公式及其应用,了解 Stokes 公式及场论。
(三)无穷级数论与反常积分部分,30%(45 分)
考试内容:
1、无穷级数论
常数项级数敛散性及性质;正项级数审敛法;任意项级数审敛法;绝对收敛与
条件收敛;函数项级数相关概念;函数列(级数)一致收敛性及判别法;函数列(级
数)的分析运算性质;幂级数收敛半径;Abel 第一、第二定理;幂级数分析性质;5
个重要 Maclaurin 展开式;Riemann 引理;Fourier 级数的收敛性定理;函数展开
成幂级数;函数展开成 Fourier 级数或正弦、余弦级数;级数求和问题。
2、反常积分与含参变量积分
两类反常积分敛散性及性质;反常积分审敛法;绝对收敛与条件收敛;两类反
常积分的联系;含参变量积分(反常积分)函数的概念;含参量积分函数的分析性质;
含参量变限积分函数的求导法则;含参变量反常积分一致收敛性及判别法;含参量
反常积分函数分析运算性质;反常积分(含参变量积分)计算法。
考试要求:
1、理解绝对收敛和条件收敛概念,掌握常数项级数的各种审敛法,理解函数
列(级数)一致收敛性概念,掌握一致收敛判别法,掌握函数列(级数)分析运算性质,
会将函数展开成幂级数或 Fourier 级数,掌握幂级数求和方法。
2、理解两类反常积分敛散性的概念与性质,掌握反常积分的各种审敛法,会
4
计算简单的反常积分,理解含参变量积分(反常积分)函数的概念及分析性质,掌握
含参变量反常积分一致收敛判别法。
五、主要参考书目
(一)欧阳光中等编:《数学分析》(第三版),高等教育出版社,2007 年版。
(二)刘玉琏等编:《数学分析讲义》(第五版),高等教育出版社,2011 年版。
上一篇文章:
2018年集美大学水产学概论考研大纲
下一篇文章:
2018年集美大学机械原理考研大纲
关于我们
|
网站导航
|
网站地图
|
购买指南
考博
咨询QQ 135255883
考研
咨询
QQ 33455802
邮箱:
customer_service@kaoboinfo.com
考博信息网 版权所有
©
kaoboinfo.com
All Rights Reserved
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!