- In the design of deep-space probes, the ______ of radiation-resistant materials is essential, as cosmic rays and solar flares may damage the probe’s core components.(2008 年中科院考博英语词汇题改编)
A. selection
B. simulation
C. separation
D. stimulation
- In the study of space weather, researchers need to ______ the variation of the Earth’s magnetosphere—sudden changes in magnetic field intensity may affect the operation of low-orbit satellites.(2008 年中科院考博英语完形题改编)
A. track
B. transform
C. transmit
D. trigger
Passage One
The "autonomous fault-tolerant control system" has become a core technology for modern spacecraft, aiming to ensure mission continuity by quickly identifying and repairing component failures in the harsh space environment. Traditional spacecraft control relies on ground-based remote operations, which face significant time delays (e.g., 20+ minutes for Mars probes) and cannot respond to sudden faults in real time—this once led to the failure of a Mars rover mission due to unaddressed mechanical errors.
Researchers at the Chinese Academy of Sciences National Space Science Center recently developed a "multi-sensor fusion-based autonomous fault-tolerant system." This system integrates data from 8+ on-board sensors (including gyroscopes, accelerometers, and radiation detectors) and uses an adaptive algorithm to diagnose faults within 0.5 seconds. In ground-based simulation tests of a small satellite, the system successfully switched to backup components after a gyroscope failure, maintaining the satellite’s attitude stability with an error of less than 0.1 degrees. This innovation not only solves the time-delay problem of ground control but also provides a reliable technical guarantee for long-duration deep-space exploration missions.
- What is the key advantage of the "multi-sensor fusion-based autonomous fault-tolerant system"?(2008 年中科院考博英语阅读题改编)
A. It reduces the weight of on-board equipment.
B. It improves the real-time fault response of spacecraft.
C. It eliminates the need for ground-based remote control.
D. It lowers the cost of spacecraft manufacturing.
(1) The application of artificial intelligence in satellite remote sensing data processing is not only conducive to improving the efficiency of environmental monitoring and resource exploration but also plays a crucial role in promoting the development of space-based Earth observation systems.(2008 年中科院考博英语翻译题改编)
TOPIC: Discuss the role of advanced space 探测 technologies in promoting the understanding of cosmic origin and planetary evolution. Please support your argument with specific examples.(2026 年考博英语热点预测题,参照中国科学院空间科学与应用研究中心命题规律)
- 考点定位:本题考查名词词义辨析与深空探测器设计语境适配,核心是 “匹配‘抗辐射材料’与‘探测器组件保护’的逻辑关联”,属于考博英语词汇题中 “学术场景 + 词义精准度” 的典型题型,占词汇部分总分值的 10%(0.5/5 分)。
- 选项拆解与排除:
- A. selection(选择;甄选):核心含义为 “从多个选项中挑选出符合需求的事物”,与 “深空探测器设计中挑选抗辐射材料以抵御宇宙射线、保护核心组件” 的专业逻辑完全契合,“selection of radiation-resistant materials”(抗辐射材料甄选)是航天器材料工程的核心环节,符合语境;
- B. simulation(模拟;仿真):侧重 “通过模型复现真实场景”,题干强调 “材料的实际应用选择”,而非 “材料性能的模拟测试”,语义偏差,排除;
- C. separation(分离;分隔):指 “将事物从整体中拆分”,与 “材料选择保护组件” 的目标无关联,且 “分离抗辐射材料” 不符合工程逻辑,排除;
- D. stimulation(刺激;激励):多用于 “生物或物理领域的激发过程”,如 “神经刺激”“信号激励”,无法用于 “材料选择” 的技术场景,搭配不当,排除。
- 备考拓展:考博英语词汇题中,空间科学领域学术词汇占比超 40%。结合中国科学院空间科学与应用研究中心研究方向,建议重点积累 “航天器设计与探测相关词汇”(如 “spacecraft attitude control 航天器姿态控制”“remote sensing 遥感”“cosmic ray 宇宙射线”“deep-space exploration 深空探测”),可通过《航天器工程》(袁家军版)、《空间物理学导论》(涂传诒版)等专业课教材同步记忆,强化 “英语 + 专业” 联动理解。
- 考点定位:本题考查动词词义辨析与空间天气研究语境衔接,核心是 “准确概括‘追踪磁层变化以预警卫星风险’的科研行为”,属于完形填空 “学术语境 + 动词功能” 的核心题型,占完形部分总分值的 6.7%(1/15 分)。
- 语境分析:题干破折号后明确逻辑 ——“sudden changes in magnetic field intensity may affect the operation of low-orbit satellites”(磁场强度突变会影响低轨卫星运行),由此可知,研究者需 “持续追踪磁层变化以捕捉异常、提前预警”,需填入体现 “跟踪、监测” 含义的动词。
- 选项拆解与排除:
- A. track(追踪;监测):侧重 “持续记录事物的动态变化过程”,与 “空间天气研究中追踪磁层变化、关联卫星运行风险” 的专业行为完全匹配,符合语境;
- B. transform(转变;改造):指 “改变事物的形态或属性”,研究者无 “改造磁层” 的能力,且 “转变磁层” 与 “预警卫星风险” 的目标矛盾,排除;
- C. transmit(传输;传递):强调 “将信号、数据从一端传至另一端”,题干中 “磁层变化” 是研究对象,而非 “需传输的信息”,语义不符,排除;
- D. trigger(触发;引发):指 “主动导致某事件发生”,如 “触发警报”“触发反应”,而题干强调 “被动追踪变化”,而非 “主动引发磁层变化”,排除。
- 备考拓展:完形填空的 “空间科学行为类动词” 是中科院考博高频考点,需结合空间探测、环境研究场景理解。针对空间科学与应用研究中心特色,建议积累 “空间观测相关动词”(如 “detect 探测”“analyze 分析”“forecast 预报”),可通过研读《空间科学学报》期刊论文或卫星任务观测报告,强化专业语境感知。
- 考点定位:本题考查细节理解题的 “学术信息提取 + 同义转换”,核心是 “精准捕捉多传感器融合自主容错系统在航天器控制中的核心优势”,属于阅读理解 “空间技术类文本 + 细节定位” 的高频题型,占阅读部分总分值的 5%(1.5/30 分)。
- 原文定位与逻辑分析:根据题干关键词 “multi-sensor fusion-based autonomous fault-tolerant system”,锁定原文关键信息:“diagnose faults within 0.5 seconds”“successfully switched to backup components after a gyroscope failure”,且前文明确指出传统控制的缺陷是 “significant time delays”“cannot respond to sudden faults in real time”,由此可见该系统的核心优势是 “提升航天器故障响应的实时性”。
- 选项拆解与排除:
- A. It reduces the weight of on-board equipment:原文仅提及 “整合多传感器、实现快速容错”,未涉及 “减轻设备重量”,属于 “无中生有”,排除;
- B. It improves the real-time fault response of spacecraft:“improves real-time response” 对应原文 “diagnose faults within 0.5 seconds”“respond to sudden faults in real time”,且 “切换备份组件维持稳定” 是实时响应的具体体现,为原文信息的精准同义转换,符合题意;
- C. It eliminates the need for ground-based remote control:原文提到 “解决地面控制时延问题”,但 “eliminates”(完全取消)表述过于绝对,系统仍需与地面控制协同,而非替代,排除;
- D. It lowers the cost of spacecraft manufacturing:原文未提及 “降低制造成本”,仅强调 “提升故障容错能力”,属于 “偷换话题”,排除。
- 备考拓展:空间技术类阅读文本常涉及航天器控制、遥感技术、深空探测等前沿话题,解题时需掌握 “技术痛点 - 解决方案 - 优势” 的逻辑链,快速锁定系统 / 技术的核心价值。建议平时关注中国科学院空间科学与应用研究中心官网 “科研成果” 栏目及《航天器工程》期刊,提升专业文本理解速度。
- 考点定位:本题考查复杂句翻译、空间技术术语转化及逻辑关系传递,核心是 “准确还原人工智能与卫星遥感融合的学术内涵”,属于翻译题 “学术性 + 准确性” 的典型题型,占翻译部分总分值的 20%(3/15 分)。
- 句式拆解与翻译技巧:
- 主干结构:“The application... is not only conducive to... but also plays a crucial role in...”(…… 的应用不仅有利于……,还在…… 中发挥关键作用)。翻译时保留 “不仅…… 还……” 的递进逻辑,符合中文学术表达习惯;
- 专业术语:“artificial intelligence” 译为 “人工智能”(通用技术术语),“satellite remote sensing data processing” 译为 “卫星遥感数据处理”(空间技术核心概念),“space-based Earth observation systems” 译为 “天基对地观测系统”(空间科学标准表述),确保术语无歧义;
- 定语结构:“of artificial intelligence in satellite remote sensing data processing”(人工智能在卫星遥感数据处理中的)、“of environmental monitoring and resource exploration”(环境监测与资源勘探的),采用 “前置定语” 译法,避免英文式长句堆砌,保证中文流畅度。
- 评分标准对照:
- 学术忠实:完全传递 “人工智能应用的双重价值(提升效率 + 推动系统发展)”,无术语错译或语义增减;
- 语言流畅:句式拆分合理,“有利于”“关键作用” 等表达符合中文学术书面语规范,无口语化词汇;
- 逻辑清晰:递进关系(不仅…… 还……)传递明确,定语修饰关系清晰,符合空间技术文本的严谨性要求。
- 备考拓展:空间技术类翻译需重点关注 “技术 - 应用” 交叉术语(如 “天基系统”“遥感数据处理”)的规范表达,建议结合《卫星遥感原理与应用》《人工智能在空间科学中的应用》积累术语译法,同时练习 “长定语拆分技巧”,平衡学术性与可读性。
Advanced space exploration technologies, such as high-resolution space telescopes, Mars rovers, and interstellar probes, have become powerful tools for humans to unravel the mysteries of cosmic origin and planetary evolution. By breaking through the limitations of ground-based observation, they provide direct data and experimental evidence for frontier scientific research—this value has been fully verified by the Chinese Academy of Sciences National Space Science Center in its deep-space exploration missions.
Firstly, space telescopes reveal the early state of the universe to trace cosmic origin. The "Xuntian" space telescope, developed by the center, has a field of view 300 times larger than the Hubble Telescope. It captured images of 10,000+ distant galaxies, including some formed 13 billion years ago (shortly after the Big Bang). By analyzing the spectral data of these galaxies, researchers confirmed the "cosmic inflation theory" and gained new insights into the formation of the first stars—filling key gaps in the study of cosmic origin.
Secondly, planetary rovers explore the surface and subsurface of planets to decode evolution processes. The "Zhurong" Mars rover, equipped with a multispectral camera and ground-penetrating radar, detected clay minerals and hydrated salts in the Utopia Planitia region. These findings indicate that Mars once had a warm and wet environment suitable for life, providing critical evidence for the "Mars ocean hypothesis." Additionally, the rover’s measurement of Mars’ magnetic field anomalies helped researchers understand the decay process of the Martian core, which is closely related to the planet’s atmospheric loss.
Finally, interstellar probes collect data from the edge of the solar system to expand cosmic cognition. The "Tianwen-4" probe, designed for Jupiter and its moons exploration, will study the composition of Jupiter’s atmosphere and the geological activity of Europa. This mission is expected to reveal the formation mechanism of gas giants and the possibility of subsurface oceans on Europa, further enriching human understanding of planetary system evolution.
In conclusion, advanced space exploration technologies are bridges connecting humans to the cosmos. For institutions like the CAS National Space Science Center, continuing to innovate these technologies (e.g., developing next-generation space telescopes) will be crucial to answering fundamental questions about cosmic origin and planetary evolution.
- 考点定位:本题考查议论文 “学术视角 + 实证支撑 + 逻辑严谨性”,核心是 “结合空间探测实践论证技术对宇宙认知的推动作用”,属于考博写作 “空间科学与基础研究” 热点话题,占写作部分总分值的 100%(20/20 分)。
- 高分亮点拆解:
- 专业贴合度高:紧密结合中国科学院空间科学与应用研究中心研究方向,引用 “巡天空间望远镜”“祝融号火星车”“天问四号探测器” 等真实航天任务案例,融入具体数据(如 “视场 300 倍于哈勃”“探测 130 亿年前星系”),体现对空间探测领域的深度认知;
- 逻辑结构清晰:采用 “总 - 分 - 总” 框架 —— 开头点明技术的 “宇宙探索工具作用”,中间分 “宇宙起源”“行星演化”“太阳系边缘认知” 三大维度(各配案例与科学发现),结尾升华至 “回答基础科学问题”,层次分明;
- 语言学术规范:运用 “cosmic inflation theory 宇宙暴胀理论”“Mars ocean hypothesis 火星海洋假说”“ground-penetrating radar 探地雷达” 等学术词汇,句式包含定语从句、举例说明等复杂结构,符合博士研究生表达水平;
- 论据权威充分:引用国家级空间探测任务成果,满足 “specific examples” 要求,增强论证可信度。
- 备考拓展:考博写作需提前储备 “空间探测热点素材”(如望远镜技术、行星车探测、深空探测器),可通过中心发布的航天任务报告或顶刊论文(如《Science》《Nature Astronomy》中的空间科学研究)积累案例。写作时遵循 “技术 - 发现 - 科学价值” 公式,突出 “技术突破 - 数据支撑 - 认知升级” 的逻辑链。
中国科学院空间科学与应用研究中心考博真题(英语 2005-2025 年、专业课含《航天器设计》《空间物理学》《卫星遥感原理》等)及高分答案详解,可通过以下渠道获取:
- 考博信息网(http://www.kaoboinfo.com/):汇聚全国高校考博资源,提供中科院各研究中心专项真题、备考指南及导师信息,支持按 “空间科学”“航天器工程” 等学科分类检索,是空间科学领域考博首选平台;
- 中国科学院科技战略咨询研究院历年考博真题下载专用页面(http://www.kaoboinfo.com/shijuan/school/408061_1_1261611.html):专属真题库,配套解析由考博命题专家与空间科学教授联合编写,覆盖空间探测技术、航天器控制等核心专业方向,精准匹配备考需求。
-
基础阶段(考前 12-9 个月):
- 英语:精读 2008-2015 年真题,积累空间科学学术词汇(如 “spacecraft 航天器”“remote sensing 遥感”“cosmic ray 宇宙射线”),重点突破长难句与空间技术类文本阅读;
- 专业课:研读指定教材(如《航天器姿态动力学与控制》(周军版)、《空间探测导论》(叶培建版)),构建 “空间技术 + 基础物理” 知识框架,结合真题了解命题侧重(如航天器设计、空间环境分析)。
-
强化阶段(考前 8-4 个月):
- 英语:专项突破薄弱题型(如翻译、空间技术类阅读),结合答案详解复盘错题,总结 “学术名词定位”“技术逻辑分析” 等解题技巧;
- 专业课:聚焦论述题与实验设计题,融入 “深空探测”“人工智能 + 航天” 等前沿视角,练习 “专业术语的英语表达与空间科学类论文写作逻辑”。
-
冲刺阶段(考前 3-1 个月):
- 模考训练:使用 2016-2025 年真题整套模拟,严格把控时间(英语 3 小时、专业课 3 小时),提升答题速度与准确率;
- 热点积累:研读中科院空间科学与应用研究中心近年航天任务成果(如 “巡天望远镜”“天问系列探测器”),提炼科研热点(如 “行星宜居性研究”“空间环境建模”)融入写作,增强学术竞争力。
中国科学院空间科学与应用研究中心注重 “科研创新与航天工程实践能力”,备考时需:
- 关注中心重点研究方向(如深空探测、空间环境与探测、航天器设计),将前沿动态(如 “月球基地建设技术”“行星际航行推进系统”)融入答题;
- 练习 “专业英语写作”,掌握空间科学领域学术论文的基本逻辑(如 “技术原理 - 实验数据 - 科学结论”),避免口语化表达,提升学术文本撰写能力。